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THE STRESS ANALYSIS OF MULTI-LAYERED COMPOSITES
WITH A FLAWt
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Lehigh University, Bethlehem, Pennsylvania

Abstract-The plane strain and anti-plane shear problems for the general multi-layered composites are considered.
The main objective of the paper is to provide the theoretical tools for studying the fracture oflayered composites
with flaws. The problem of interest is, therefore, the determination of the disturbance in the stress state in the
layered medium due to the existence of a flaw. A new method is developed to obtain the relevant system of
integral equations for the problem. The system of equations is solved for some particular cases and the numerical
results for the stress intensity factors are given.

1. INTRODUCTION

MULTI-LAYERED bonded plates and shells will perhaps be one of the most common and
basic structural materials in the design and construction of aerospace and hydrospace
vehicles in the coming decades. The basic appeal of the idea lies in the great flexibility it
offers to design engineers, providing, for example, such properties as high modulus, yield
and ultimate strength with high toughness through a combination oflayers having various
properties, directional strengthening ofthe structure by means offiber or filament reinforced
layers, obtaining a desirable damping characteristic by including a suitably selected visco­
elastic layer, et~.

In studying the mechanical response of the layered composites, generally one may
differentiate two groups of problems: the first relates to the bulk response of the composite
and usually consists of problems concerning the determination of the mechanical properties
of and the overall stress distribution in the medium which is assumed to be free from local
imperfections. The second group of problems concerns the micromechanics of the medium,
in which one is particularly interested in the response of the medium in the neighborhood
of localized imperfections. Common forms of these imperfections are broken bonds on the
interfaces, and voids, inclusions and dislocations in the layers. For mathematical con­
venience, these imperfections may all be classified as singular surfaces across which the
displacement or the stress vector suffer a discontinuity. The importance of these problems
lies in their application to the fracture of the composites, for it is reasonable to expect
(and the practical evidence indicates) that these imperfections will generally form the nucleus
of the fracture initiation and propagation in the medium.

In this paper, we will consider the plane strain and anti-plane shear problems for a
medium composed of homogeneous, isotropic layers with different mechanical properties.
After outlining the general procedure for obtaining the integral equations of the problem,
we will concentrate on the specific examples concerning an elastic layer with a crack bonded

t This work was supported by the National Science Foundation under the Grant GK-1804, and the National
Aeronautics and Space Administration under the Grant NGR-39-007-011.
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to two elastic half planes. Even though the technique described here is quite general and the
effects of additional layers, anisotropy and the interaction of more than one flaw may be
taken into account in a straightforward manner, with the inclusion of these effects the
analysis as well as the solution of the resulting integral equations become increasingly com­
plicated, time consuming and costly.

The main interest of the paper is in the evaluation of the disturbance in the stress state
due to the existence of a crack. Thus, assuming that the overall stress distribution in the
imperfection-free medium is known, through a simple superposition the singular portion
of the problem may be formulated as a stress disturbance problem in which the only external
loads acting on the medium are the tractions on the crack surfaces.

The basic mathematical techniques used in the solution of the problem considered in
this paper have been described in [1-3]. Solutions for some special cases dealing with the
plane and anti-plane problems for bonded semi-infinite planes are given in [4-8].

2. GENERAL PROCEDURE FOR THE PLANE STRAIN PROBLEM

Consider the plane strain problem for the multi-layered medium shown in Fig. 1. The
medium consists ofn +m layers S_m' ... ,Sn with different thicknesses and elastic properties.
For simplicity let the medium contain only a single cut along y = O,lxl < 1, and the sur­
faces of the cut be subjected to known tractions

li;ix, O) = Ii;/(X,O) = PI(X),

li;y(X, O) = Ii;/(X,O) = P2(X)
(1)

where the functions PI and P2 satisfy a Holder condition in (-1,1). Since PI and P2 are the
only external loads and since the medium possesses a geometric symmetry with respect to
x = 0 plane, the problem may be treated as the sum of a symmetric and an anti-symmetric
parts to be solved for x ~ O. In this paper, we will further restrict our attention to the sym­
metric part of the problem in which we have

Ixi < 1. (2)
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FIG. I. Notation for bonded multi-layered medium.
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The solution of the anti-symmetric part requires only a slight modification.
Assuming the x, y-components of the displacements in the ith layer in the formt

41

25.
00

Ui(X, y) = - cPi(!X' y) sin !Xx d!X
11: 0

25.
00

Vi(X, y) = - t/!;(!X, y) cos !Xx d!X,
11: 0

(i = - m, ... , -1, 1, ... , n)

(3)

and using the field equations

2 a(OUi OVi)
1J.iV Ui+(Ai +1J.i) ox ox + oy = 0

2 a(OU i OVi)
1J.iV Vi +(Ai +1J.i) oy ox + oy = 0

(4)

we obtain

Ui(X, y) = ~ 5.
00

[(Ail +Ai2y) e-ay +(Ai3 +Ai4y)eaYJsin !Xx d!X
11: 0

vi(x, y) = ~ {oo {[Ail +(:i+Y)A i2Je-
ay

+ [ -Ai3 + (:i_Y)Ai4}ay~os!Xx d!X (5)

where K i = 3-4vi and Aij are functions of !X which will be determined from the boundary
and the continuity conditions, and 1J.i and Vi are, respectively, the shear modulus and the
Poisson's ratio. After obtaining ui, Vi' the stresses may be evaluated by Hooke's Law.
In particular, the components of the stress vector at the interfaces and boundaries may be
expressed as,

-2
1

U;y = ~ 5.
00

{-[!X(Ail +Ai2y)+2(1-Vi)Ai2J e- ay
1J.i 11: 0

+[ -!X(Ai3 +Ai4y) +2(1- vi)Ai4Jeay
} cos !Xx d!X

-2
1 U~y = ~ 5.

00

{-[!X(Ail +Aily)+(1-2vi)Ai2J e- ay

1J.i 11: 0

(6)

On the boundaries y = Yn' Y = Y-m' 0 :::; X < 00 the medium may have formally any
one of the following four groups of homogeneous boundary conditions:

(a) U~y = 0 = U~y;

(c) U~y = 0 = Vi;

(b) U i = 0 = Vi;

(d) U~y = 0 = Ui ; (i = -m, n).
(7)

t For the problems under consideration the external loads. Pi' P2. are statically self-equilibrating. As a result,
the displacements as well as their derivatives decrease sufficiently rapidly as Ixl ~oo so that the requirement of
absolute integrability is satisfied and they may be expressed as Fourier integrals.
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The continuity conditions require that on the interfaces the stress and displacement
vectors in the adjacent layers be equal, i.e.

Ui+I-Ui = 0,
i+ I i

(J yy - (J yy = 0,

(i= -m, ... , -2'Y=Yi+l;

Vi + 1 -Vi = 0

i = 1, ... , n, Y = Yi; 0 ~ x < (0).

(8)

Now, to obtain the integral equations for the problem, we will first assume that at Y = 0
the bond between the two adjacent layers is perfect except for the (symmetrically located)
dislocations at Y = 0, x = t defined by t

(y = 0) (9)

where!l'/2 are constants and (9) constitutes the only "external load" acting on the medium.
In addition to (9), on the interface y = 0 we have the conditions

1 -1 0
(Jyy - (Jyy =, I -I 0

(Jxy-(Jxy = (0 ~ x < 00, y = 0). (lO)

Conditions (7)--{lO) provide 4(n + m) equations to determine the same number of un­
known functions Aik(oc). By substituting from (5) and (6) into (7), (8) and (lO) and taking the
inverse transforms, we obtain 4(n +m) - 2 linear homogeneous algebraic equations in A ik .
Again, substituting from (5) into (9) and inverting we find

oc(A ll +AI3-A_II-A_13) =!I cos oct,

- oc(A ll - A l3 - A -II + A- 13)-KI(A I2 + AI4)+K_ I(A_ 12 +A -14) = !2 sin oct. (11)

Thus, with (11), the system of equations obtained from (7), (8) and (10) may be solved for
Au in the following general form:

(i = -m, ... , -1, 1, ... ,n;j = 1, ... ,4) (12)

where the functions Ft{oc) depend on the material constants and the geometry of the
medium.

Substituting (12) into (6), the two stress components of interest in the layer S1due to the
dislocations (9) may be expressed as

1 I
-2 (J yy(x, Y, t) = hll (x, y, t)!1 +hdx, Y, t)!2

III

1 1 h-2O'Xy(x,y,t) = h21(X,y,t)!I+ 22(X,y,t)!2'
III

The functions hij are given in terms of infinite integrals involving Ft(oc).

(13)

t Here in the analysis we are considering the half plane x > O. In order to introduce the dislocations, the cut
is made between 0 and t. Thus the relative displacements are constant for 0 < x < t and zero for x > t, i.e.

U1-U- 1 =!I[H(x-t)-1],V1-V_ 1 =!2[H(x-t)-1]

where H( ) is the Heaviside step function. The crack opening is formed through the superposition ofthese relative
displacements. Note that the integrability conditions of displacements are still satisfied.
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(14)(i = 1,2), (0 :$; x < 1).

Considering the nature of the input (9), (13) may now be considered as the Green's
functions for the problem. That is, instead of (9), if we have the x-derivatives of the relative
displacements given as functions of t,fl(t),f2(t), along a certain portion L of the interface
y = 0, the stresses in the layer 8 1 may be obtained by simply replacingJi in (13) by Ji(t) and
integrating in t along L. In particular, if the cut L extends from - 1 to +1 and if the trac­
tions along the cut are known to be Pl(X), P2(X) [see: (1)], then taking again into considera­
tion the symmetry, from (13) we obtain

f
l 2 1

lim L hiJ{x, y, t)h{t) dt = -2p,{x)
y....O 0 1 J1.1

For the physical problem under consideration, the stresses on the crack surface, Pi(X), are
known and the displacement derivatives, J.{t) are unknown, which may be determined
from the integral equations given by (14). Since Green's functions of the form (13) may easily
be written for all the desired field quantities, for the solution of the problem it may then be
sufficient to determine the functionsJ.{t).

As will be seen from the specific examples considered in this paper, two of the kernels
in (14) have Cauchy-type singularity, and the system of integral equations is of first kind
if the crack is imbedded in a homogeneous layer and of second kind if the crack is located
on the interface of two dissimilar materials. For the solution of the integral equations, it
will be more convenient to express (14) in the range -1 < x < 1, -1 < t < 1 by using the
symmetry properties ofthe functionsJi and Pi> (i = 1,2).

Here it should be clearly noted that in writing (14) from the Green's functions (13) we
have used the condition thatnt) = 0, (j = 1,2) for It1> 1. However, on y = 0, Ixl > 1, in
addition to the continuity of the stress vector which has been used in deriving (13), the
conditions which must be satisfied are, U 1 - U _ 1 = 0 and VI - V-I = O. Referring now to
the definition ofJl ,J2' i.e.

o
Jl(X) = ox(U1-U-1),

for the continuity of the displacements (aside from a rigid body translation) on y = 0,
Ixl > 1, Jl and J2 must satisfy the following conditions

fl Jix)dx = O. (15)

3. ANTI-PLANE SHEAR PROBLEMS FOR A MULTI-LAYERED MEDIUM

Again, consider the medium shown in Fig. 1 in which we now assume that all the external
loads act in z direction. Thus, to solve the problem, it will be sufficient to determine the
z-components Wi ofthe displacement vector in the layers 8 j • Restricting our attention again
to symmetric problems, and expressing Wi in terms of the Fourier integrals

2 f.ooWj(x, y) = - O;(Y, O() cos o(x dO(
11: 0

from the field equations

(i = -m, ... , -l,l, ... ,n), (16)

(17)
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(18)

The nonvanishing stress components are

. aW j

CT~z(x, y) = fJ.j ax

. aw· 2 f.ooI _ ,_ ay -exyCT yz(x, y) - fJ.j-a - fJ., iX(A je - B je ) cos iXX diX.
Y n 0

(19)

(20)

(y = 0)

(21)

Following the procedure outlined in the previous section, from (18) and (19) the boundary
conditions at Y = Yn' Y = Y- m, and the continuity conditions across the interfaces with no
cuts may be written as

fJ.niX(An - Bn e - 2aYm ) = 0

Jl-miX(A- me2ay-m-B_m) = 0

(A j+I +Bj+1e-2aYi)_(Aj+Bj e- 2aYi ) = 0 (i = 1, ... , n-1)

(Aje2aYi+B)-(Aj_1 e2aYi+Bj_l) = 0 (j = -m+ 1, , -1)

fJ.j+I(Aj+1-B j+1e-2aYi)_Jlj(Aj_Bje-2ay,) = 0 (i = 1, ,n-l)

JliAje2aYi-B)-Jlj_l(Aj_l e2aYi_Bj_l) = 0 (j = -m+1, ... , -1).

Instead of stress boundary conditions assumed in (20) (first two equations), we may have
displacement or stress and displacement boundary conditions. Again, assuming a disloca­
tion of strength fat Y = 0, x = t defined by

a
ax(W1-W- I) = ft5(x-t),

to be the only external load, for the conditions at Y = 0 we have

JlI(A1-Bd-Jl-I(A_I-B_1) = 0

-iX(A I +BI)+iX(A_ 1+B_ I) = fsin iXt.

The unknown functions A j , B j may be determined from (20) and (21). In particular, by simple
elimination, it is easy to show that

AI(iX) = G1(iX)BI(iX),

iXB1(iX) = - Jl-I [1 + G2(iX)]f sin iXt
JlI + fJ.- I

GI(iX) = 0(e- aY1 ), G2(iX) = O(e- aY1 , eay-,) for iX -+ 00.

(22)

The stress component CT~z due to the dislocation f may then be expressed as

a~z(x,y, t) = JlIJl-I f3..f.oo (1+G2)(e- aY -GI eay) sin iXt cos iXX diX. (23)
fJ.I +Jl-l n 0
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If there is a crack on the interface y = 0, Ixl < 1, acted upon by tractions

(1;z(x,O) = (1; I(X, 0) = p(x) = p( -x), Ixl < 1 (24)

fmay be assumed to be a function of t which is zero for ItI > 1, and is unknown in ItI < 1.
Thus using the Green's function (23), the integral equation for fmay be expressed as

/-l1 + /-l- 1p(x) = lim [1 f(t) dt~ [00 e -IIY sin txt cos txX dtx
/-l1/-l-1 Y.... O+ Jo 1[Jo

(25)

where, because of uniform convergence [see third equation of (22)], in the second term the
limit has been put under the integral sign. At this point we require that, because of the
boundedness and smoothness of the crack opening displacement WI - W - 1 , the unknown
function f be continuous tn 0 :s; x < 1 and be integrable around x = 1. Under these
conditions and usingf(t) = - f( - t), the first term in the right hand side of(25) becomes [2]

lim ~ [1 f(t) dt [00 !e-IIY[sin tx(t-x)+sin tx(t + x)] dtx
Y.... O+ 1[ Jo Jo 2

= lim !I l

f(t)dt [00 e-IIYsintx(t-x)dtx
Y .... O+1[ -1 Jo

= -! II f(t) dt. (26)
1[ -1 t-x

Similarly, expressing the second term in (-1, 1), (25) may be written as

/-l1 + /-l-1 p(x) = ~ II f(t) dt + II k(x, t)f(t) dt, Ixl < 1
/-l1/-l-1 1[ -1 t-x -1

where the Fredholm kernel k(x, t) is given by

(27)

(28)

(29)

Note that k(x, t) goes to zero as Yl --+ 00, Y-l --+ - 00 and we recover the simple integral
equation for the bonded half planes [8].

Again, in deriving (25) we used the condition (O!OX)(WI - W-1) = f(x) = 0, rather than
WI -W-l = 0, for Ixl > 1, Y = o. Thus the continuity of the displacements requires that
(27) must be solved under the following single-valuedness condition:

fl f(t)dt = O.

4. EXAMPLES
In this section we will consider various specific examples of some practical interest.

The main problem which will be studied is that of an elastic layer bonded to two dissimilar
half planes. It will be assumed that the layer contains a through crack parallel to the inter­
faces and is subjected to in-plane or anti-plane surface tractions on the crack surfaces.
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4.1 Anti-plane shear ofan elastic layer bonded to two halfplanes

The geometry of the first example is shown by the insert in Fig. 2. In this case, noting
that Yz = ex), Y- z = - 00, fJ.l = fJ. - 1 (see Fig. 1), if we solve the equations (20H22) with the
notation of Fig. 2, we obtain

Gz(cx) = Az e - Z~h2,

Gt(CX) = -At(Az e-Z~h+e-Z~hl)/(l-AtAZe- Zah )

At = (fJ.l - fJ.3)/(fJ.t + fJ.3), Az = (fJ.z - fJ.3)/(fJ.z + fJ.3)·

(30)

'-2 10-0
Uyr (x,OI=-To,lxl<a

fIoz
y

1-0 8-0

fJ).
x

0-8 QIl:I 6O
.. ~ flo'

~l:I
l~

..... !!..= 10 1!J=0-1
--::; 0 0-6 4-0 a • a
15 ..

flo, = 05f1oz' J-I,= 02 fIoz

0-4 2-0

x/a

FIG. 2. Stress distribution along y = 0, x > I for the anti-plane case.

Thus, once the traction p(x) is specified the integral equation (27) gives the solution by using
the kernel obtained from (28) and (30) and the condition (29). Singular integral equations
of the form (27) has been very extensively studied (see, for example, [IJ). Equation (27) may
be solved by reducing it to an integral equation with a weakly singular kernel to which the
Fredholm theorems are applicable. This reduction may be accomplished by using either
the singular adjoint operator to regularize the integral equation, or the method ofCarleman
and Vekua in which the integral containing k(x, t) is considered part of the input and the
method of solution of the dominant system is followed.

Considering the dominant part of(27), the fundamental function ofthe singular equation
may easily be determined as follows [IJ:

R(t) = (l-t)!+nl(l+w t +n2 (31)

where nl and nz are arbitrary integers which are determined through physical considera­
tions. Mter deformation since the crack opening displacement around Ixl :::;; 1 is parabolic
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rather than a cusp, at x = += 1 the displacement derivative f(x) must have a singularity.
And also for Ixl :$ 1 since the displacement is finite, the singularity off must be integrable.
Aside from a multiplying analytic function of t, the behavior off around Ixl = 1 is entirely
determined by the fundamental function R(x). Thus, it is easy to see that, for the problem
under consideration the constants in (31) are n1 = -1, nz = °and R becomest

(32)

The index of the singular integral equation (27) is I( = - (n 1 +nz) = 1, meaning that the
solution of (27) will be determinate within an arbitrary constant, which is determined from
the condition (29).

To solve (27), instead ofusing the standard methods mentioned above which are numeri­
cally very cumbersome, we will use the method described in [3]. This method is based on the
basic observation that the fundamental function R(t) of the integral equation is the weight
function ofChebishev polynomials ofthe first kind. Thus expressing the unknown function
as

(33)

and using the relations

I
1

T;{t)(l- tZ)-t~ = {a, j = ° (34)
-1 t-x nUj - 1(x), j> °

the singularity of the equation may be removed and the problem may be reduced to an
infinite system of linear algebraic equations in the unknown coefficients An. In (34) Uix)
is the Chebishev polynomial of the second kind. Note that with the choice off as an odd
function in (33), the single-valuedness condition (29) is automatically satisfied. Thus sub­
stituting from (33) into (27) we obtain

where

00

p(x) = L[UZj(x)+Hzj+1(X)]Aj
o

(35)

(36)

t From the related Hilbert problem it is easy to show that in this problem the end points +1 are non-special
ends. Hence, at these points the function is either zero or unbounded (see [1], §79). This information, which is
necessary to determine the index of the integral equation, is basically physical and cannot be deducted from the
mathematics of the problem. In considering the solution of singular integral equations, if the unknown function
is a "flux"-type quantity (e.g. stress, displacement derivative, heat flux, velocity) the solution sought is of the class
ho and the function has integrable singularities at all non-special ends. On the other hand if the unknown function
is a "potential"-type quantity (e.g. displacement, temperature, velocity potential) the solution is of the class h..
(m being the number of the non-special ends) and the function is bounded at all ends. Since in most applications
the unknown function falls in the former category and since ho is the most general class of solutions, in some
applications the lengthy physical considerations are replaced by a mathematical "hypothesis". However, the ho
assumption (or hypothesis) may not always lead to the most convenient solution (see, for instance, the example
in §99 of [1] on the rigid stamp with rounded corners) or may not even be correct, as, for example in the case of
elastostatics of cracked shells where the structure of the integral equations is identical to that of (60) but the
unknown functions are essentially in-plane displacements [11], hence the fundamental solution is of class h..
rather than ho.
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(37)

The algebraic equations are obtained from (35) by using a weighted residual method with
the orthogonal system Ui(x) as the weight functions. Defining the constants

Fn = f 1 P(x)U2n(x)(1- x2)t dx, (n = 0, 1, ...)

anj = f 1 H 2j+ l(X)U2n(X)(1- x2)t dx, (n,j = 0,1, ...)

and using the orthogonality relation

II UiX)UiX)(1-X2)tdX={0, n#-j
- I n12, n = j

we then obtain

(38)

(n = 0, 1, ...). (39)

In the problems considered in this paper the systems ofequations such as (39) are solved
by using the method of reduction, and since the convergence was very satisfactory in all
cases, no more than twelve unknown coefficients (or pairs of coefficients) were needed for a
three significant digit accuracy in the stress intensity factors for the worst combination of
dimensions, (Le. the smallest values of hI, h2 or h used in the calculations). The number of
unknown coefficients was adjusted for the desired degree of accuracy in the stress intensity
factors.

By examining the behavior of the general solution in the close neighborhood of the
crack tip (see, for example [8]), the stress intensity factor defined by

k3 = lim J(x2-l)uyz(x, 0) (40)
x-I

may be related to the derivative of the crack opening displacement, !(x) as follows

k3 = -lim Jl,1J.1-1 J(1-x 2)!(x).
x-I J.11 +J.1-1

Since Jl,1 J.1-I = 113, from (41) and (33) we obtain

(41)

(42)

For a constant shear (Jyz(x, O) = -To and material properties Jl,I = 0·5112, J.13 = 0·2Jl,2
the results are shown in Figs. 2-4. Figure 2 shows the distribution of the shear stress for
x> Ion the plane of the crack for hdh = 0·1. Figure 3 shows the stress intensity factor k3

as a function of hdh for various values hla. Figure 3 indicates that, because of the stiffer
half-planes bonded to its sides, the stress intensity factor in the layer is always smaller
than the value LO.ja corresponding to the infinite medium. Also, it is seen that as the
relative thickness of the layer h/a decreases, the stress intensity factor too decreases. This
is also seen in Fig. 4 which shows the variation of k 3 (along with some plane strain results)
for hI = hl2 and the material properties given in Fig. 2 as a function of hla.t Figure 3

t Note the difference in definition of h in Figs. 3 and 4.
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FIG. 3. Stress intensity factor for the anti-plane case.

also shows that as the crack approaches the interfaces, there is again a sharp decrease
in k3 • Finally we note that if the stiffness of the layer is greater than that of the half planes,
the above trends concerning the magnitude of k3 will be reversed.

In the problems of layered composites, as the crack approaches an interface, part of
the Fredholm kernel increases very rapidly and, as a result, the numerical analysis requires
more care. In limit for hI = 0 or hz = 0 part of the Fredholm kernel becomes a Cauchy
kernel which has to be separated and combined with the first term in (27). For example
in (30), if hI = 0 it may easily be shown that (27) becomes

~ II f(t) dt + II k(x, t)f(t) dt = J11 + J13 p(x) , Ixl < 1
1t -1 t-x -1 J11J13

(43)
1 foo (1 + AdAz e-Z~h .

k(x, t) = - A Z~h sm tX(t - x) dtX.
1t 0 1- lAze

Further, if we also let h -. 0 in (43), k(x, t) becomes a Cauchy kernel and (43) reduces to

~fl f(t)dt = J11 + J1zp(x) , Ixl < 1
1t _ 1 t - X J11J1Z

which is the integral equation for two bonded half planes with an interface crack [8].
Figure 3 also shows the variation of the strain energy release rate as a function of hdh

for various values of h/a. In the notation of Fig. 1, this quantity may be obtained from
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FIG. 4. Stress intensity factors for the plane strain case.

the stresses and displacements around the crack tips as the rate of closure energy for a
crack propagating in its own plane as follows:

(
iJU) sa+da
~ da = 2 !O"yz(x)[wl(x-da)-w_l(x-da)] dx
va - 1, 1 a

_ n(111 +11- 1)(k)2 d
- 3 -1,1 a

211111- I

or, for the example under consideration,

hi
0< h < 1,
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It is seen that as the crack approaches to an interface with a stiffer material there is even
a sharper decrease in au/aa (compared with that in k3). Since au/aa represents the rate
of energy available for fracture, hI corresponding to (au/aa) = maximum would give the
fracture plane, provided the shear cleavage resistance of the bonds is sufficiently high.
For example, if )I denotes the shear cleavage strength, for h/a = 0·4 fracture would take
place within the layer 3 provided )11,3> 0·48)13 and )12,3 > 0·33)13'

4.2 Plane strain problem for an elastic layer bonded to two identical half planes

As a second example we consider the plane strain problem of an elastic layer bonded
to two half planes of the same elastic properties. In this relatively simple example it will
be assumed that the crack is located in the mid-section of the layer (see the insert in Fig. 4).
Thus, under properly symmetric tractions on the crack surfaces, y = 0 and x = 0 planes
are planes of symmetry for the problem, and it is sufficient to consider the quadrant
x :2 0, Y :2 0 only. Referring to (5) and the insert in Fig. 4 it is seen that A 23 = 0 = A24
and the remaining six functions All, ... ,AI4,A21,A22 are determined from the condi­
tions at y = hand y = O. At y = h the continuity of displacements and stresses require that

y = h, x :2 O. (44)

For the symmetric problem at y = 0 we have

y = 0, x :2 O. (45)

(46)y = 0,

Substituting from (5) and (6) into (44) and (45) we obtain five algebraic equations in
AiilX), The sixth equation is obtained by considering a dislocation as x = t as follows:

aVI l-
ax = -d20(X-t),

from which, using (5), we obtain

-1X(A ll -A13)-Kl(AI2 +AI4) = if2 sin 1Xt. (47)

After obtaining A;iIX) if we substitute them into (6) we obtain the Green's functions for
the stresses. In particular the normal stress at y = 0 may be obtained as

U;y(x,O, t) = 1
2

J.1.1 lim ~ f2 (00 [e-~y +G1(1X)] sin IXt cos IXX dlX
+Kl y-+O+ 11: Jo

(1- ala2+4IXh +41X2h2- 2al e- 2~h) e- 2~h

G1(1X) = 4 h -2~+ -4~h (48)a2 - IX e al e

If we assume that there is a cut in the layer along Ixl < 1, y = 0, and the surfaces of
the cut are subjected to tractions given by

Ixl < 1, (49)

12 may now be considered as a function of t which is zero for ItI > 1 and unknown for
Itl < 1. Through physical considerations identical to that of the previous example, we
further require that at x = =+= 1 the function fix) = 2(a/OX)Vl(X,0) be discontinuous and
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have an integrable singularity. From (48) and (49) the integral equation for j~(t) may then
be obtained as

(51)

(50)

(52)

Ixl < 1

I+K 1 (. I' 2flf:() f.oo. d-2--P1XJ= lm- 2tdt e-IXYsmatcosax a
III Y~O+ n 0 0

2 fl foo+- 12(t) dt G1(a) sin at cos ax da.
n 0 0

Noting that/2 is an odd function and following the same procedure as that of the previous
example (see: equations (25H27)], (50) may be expressed as

1II lit)dt fl I+Kl- ---+ k1(x, t)/2(t) dt = -2-Pt(x),
n -1 t-x -1 III

1 fook1(x, t) = - G1(a) sin a(t-x)da
n 0

where the function G 1 is given by (48). Again, the condition of single-valuedness of the
displacement VI requires that the function 12(t) must satisfy the following relation:

f /2(t) dt = O.

(53)y=oIxl < 1,

For the anti-symmetric problem ifwe assume that the tractions on the crack surfaces are

U;Y = 0, U;Y = P2(X) = P2( -x), Ixl < I, y = 0

and the dislocation 11 is defined as

1 I' oU l
'!Jl(X) = a;-'

it may be shown that the integral equation (51) remains valid with/1 , k 2 and P2 respectively
replacing 12 , k 1 and PI' the only difference being in the Fredholm kernel which, for this
case, may be expressed as

k ( )
- 1f.00(1-ala2-4ah+4a2h2-2ale-2IXh)e-2IXh. ()d (54)

2 x, I - - 4 h 2ah 4ah sm (J. t - x a.
n 0 a2+ IX e +al e

In plane strain crack problems the symmetric and anti-symmetric components of the
stress intensity factors may be defined as

k1 = lim J(x2-I)uyy(x, 0)
x~l

(55)
k2 = lim J(x2-l)uxix, 0).

x~1

(56)

By examining the behavior of the stresses and the crack surface displacements in the close
neighborhood of the crack tip for the general solution (see, e.g. (1]), the constants k 1 , k2

may be related to the functions /1'/2 as follows:

k 1 = - 211 lim J(I-x2)/2(X)
1+1\; x~1

k2 = -~ lim J(I-x2)/l(X).
1+K x~1
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(57)

Ixl < 1

Ixl < 1

The results obtained from the solution of (51) by using the tractions Pl(X) = -(To or
P2(X) = - to for symmetric and anti-symmetric problems, respectively, are shown in Fig. 4.
The two cases considered in Fig. 4 are £2 = 0 (Le. the layer with stress-free boundaries)
and £2 > £ l' As expected, in the first case the stress intensity factors kl' k2 are greater
than the values of (To-Ja and to-Ja corresponding to the infinite homogeneous plane,
whereas in the second case they are smaller. The figure shows that if £2 > £ l' the fracture
resistance of the layer increases as h/a ratio decreases. On the other hand, for £2 = 0,
k i -+ 00 as h/a -+ 0 (i = 1,2).

Again, from (51), (48) and (54) it may easily be verified that for h -+ 0 the kernels kj(x, t)
become Cauchy kernels, and after combining with the first terms, for the symmetric and
the anti-symmetric cases (51) respectively reduces to

~ 51 f2(t) dt = 1+K2 Pl(X),
1t -1 t-x 2Jl.2

~51 fl(t)dt = I+K2 p2(x),
1t -1 t-x 2Jl.2

which are the integral equations for the homogeneous plane with elastic properties Jl.2' K2'
Note that in (57) the unknown functions Ii are

y=o

whereas for h # 0, i.e. in (51), they are

f2(X) = :x(vi - vi), y = o.

In going to limit h = 0 the quantities which remain continuous are the crack opening
displacements, i.e.

(ui -ui) -+ (ut -ui),

Thus for a = 1 and h -+ 0 we may write

(vi -vi) -+ (vi -vi)·

(58)

or

(59)

giving the limiting values of the stress intensity factors. In (58) and (59) the second sub­
scripts refer to the materials 1 and 2 shown in Fig. 4.

For the anti-plane shear problem the limiting value of k3 shown in Fig. 4 was obtained
in a similar way. However, the values of k 3 shown in Fig. 3 for (htlh) = 0 and 1 had to be
obtained by solving the integral equations corresponding to interface cracks, in which the
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coefficient of P in (27) was ()11 + )13)/)11)13 for hi = 0 and ()12 + )13)/)12)13 for hi = h, and
the Fredholm kernels k(x, t) were different.

4.3 Elastic layer bonded to dissimilar half planes

As a third and somewhat more interesting example we consider the analysis ofa cracked
layer bonded to two half planes with different elastic constants (see the insert in Fig. 6).
The physical problem is that of bonded half planes in which the thickness of the bonding
agent is not negligible and the bonding material contains an imperfection which may be
idealized as a crack. In this problem defining

AI = (K I)13 -K3)11)/()11 +KI)13),

A2 = (K2)13 - K3)11)/()12 +K2)13),

,.1,3 = ()13 +K3)11)/()11 - )13),

,.1,4 = ()13 +K3Jl 2)/()12 - )13)

and following the procedure described in the previous sections, after rather lengthy
manipulations, the integral equations for the unknown functions II ,12 and the corre­
sponding Fredholm kernels may be expressed as

I fl f(t)dt fl 2 1+1<
- _2__+ L kIJ{x, t)Iit) dt = -23 PI(X),
n _ I t - x - I I )13

(60)
1 fl f(t)dt fl 2 l+K
- _1__+ Lk2ix,t)~{t)dt = -23p2(X), Ixl < 1,
n - 1 t - x - I I )13

k l1 (x, t) = - }nLOO
{A3L3(a) +(2ah I -1)L1(o:)

+ [AILI(iX)_AI_I-1:2hi +(1+2iXh l )L3(a)] e- 2ah } cosa(t-x)diX,

kdx, t) = - 2~Loo

{A,3L4(a) +(2ah l -1)L2(iX)

[
(1 +2ah l )2 ] 2 h} .+ AI L2(iX)+AI- ,.1,3 +(1+2ah l )L4(a) e- a I Slno:(t-x)diX,

k21(x,t) = 2~LOO {-A3L 3(a)-(2ah l +1)Lt (a)

+ [AI L l (iX) - Al +(2O:h~: 1)2 + (2iXh l -1)L3(O:)] e- 2ah} sin o:(t - x) diX,

k22(x, t) = - 2~Loo

{-,A,3L4(a)-(2a:h1+ I)L2{a)

[
1-4a:2hi J}+ AI L 2{iX)+,A,1 + ,A, 3 +(2iXh l -1)L4{a:) e- 2ahl cosa:(t-x)da:
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where

Lt(t.X) = (F2+ Ft)/F6 , L2(t.X) (F3-Ft)/F6 ,

L3(t.X) = (F4+ 1-:;h1Ft ) IF6 , L4(a) = (FS+ 1+:;htF1 ) IF6 ,

Ft(a) = (A4 +GS-G3)[G2-(A4 +Gs)e- 20:hl] -G4(2t.Xh tA4+Gt)+A3A4(GS -G3),

F2(t.X) = (A4 + GS)[G4-G2+(A4+Gs) e-20:hl]-A3A4GS'

F3(ex) = (A4 + GS)[G4 + G2-(A4 + Gs) e- 20:hl] +A3A4GS'

F4(ex) = (A4 +Gs)(G t +G3-Gs)+A4GS(2t.Xh1 -1),

Fs(t.X) = (A4+GS)(G3-GS-Gt)-A4GS(2t.Xht + 1),

F6 (t.X) = A3A.i +Ft ,

Gt(t.X) = 2ahe- 20:h'-2t.Xh2A. t e- 2o:h,

G2(ex) = A3 e- 20:h, +A4e- 20:h, +(1-4ex2hth2)e-20:h,

G3(t.X) = (1-4t.X2hth2)e- 2o:h,_ A2 e- 4 0:h'-At e- 2 0:h+A1A2 e- 20:(h+h,),

G4(t.X) = 2exh e- 20:h-2t.Xh1A2e- 20:(h+h,) + 2t.Xh2A3e- 20:h"

Gs(t.X) = (1-).2).4 +4a2h~)e-20:h'-).2e- 40:h,.

55

In deriving (60) it is again assumed that for Ixl > 1, Y = 0, It = 0 = 12 rather than
ut - uj = 0 = vt - v3". Thus (60) must be solved under the following single-valuedness
conditions

f t It(t)dt = 0, (61)

In the expressions given here Pi is the shear modulus and Ki = 3-4vi for plane strain
and Ki = (3 - vj)/(1 + Vi) for generalized plane stress. The equations given above may be
reduced to those of the previous example in a straightforward manner by letting fJ.t = fJ.2
and VI = V2' This has been verified analytically as well as numerically. Also, for ht -+ 00,

h2 -+ 00 it is easy to see that all the Fredholm kernels, kij' go to zero, and (60) reduces to
the uncoupled system for a homogeneous plane with a crack [see: (57)].

For the problems in this section we will only consider the following external loads :

(j~ix, 0) = 0, Ixl < 1. (62)

Because of the symmetry in the medium with respect to x = 0 plane, under the tractions
(62) the functions Ii will have the following symmetry properties:

Examining the dominant part of (60) and using the same arguments as that used in
Section 4.1, it is easy to see that the fundamental functions for both 11 and 12 are
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R(t) = (1- t1
) -I. Thus to solve the system of singular integral equations (60) we let

(63)

from which the stress intensity factors may be obtained as

GO

kl=-IA1n + l ,
o

(64)

As an application we will first consider the case in which the half planes 1 and 2 have
the same elastic constants with the crack at an arbitrary location in the layer. For hi = h1

the problem was considered in the previous example. For hi =F h1 , since the symmetry
with respect to y = 0 plane no longer exists, flex) # 0 for Ixl < 1. Hence (Jxy # 0 for
Ixl > 1 and k1 is nonzero, becoming increasingly more significant as the crack is moved
closer to one of the interfaces. Figure 5 shows the results for one case in which the thickness
of the layer h is equal to the total crack length 2a and the elastic constants are the same
as that shown in Fig. 4.

If the layer is a brittle material the fracture initiation at the crack tips would be expected
to take place perpendicular to the direction of maximum cleavage stress (Joo, which, in

0·6 ,_-.....;,k,-/(J",..;,O-"O-!-----_......
05

-10·

:a =1

CTyy(x,Ol=-ao.,' 10.

Ixl<a
0·1

03

004

OI------,3~~-----fO 80

-0·2 -20·
o 0'5 1'0

h,
h

FIG. 5. Variation of k\, k 2 and the cleavage angle with the distance from the interface.
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(65)

the close neighborhood of the crack tip, may be expressed as [9],

1 O[ 28 3 . ] /
(199= .j2rCOS2 k 1 cos 2-2k2SmO +O(,\"r).

In the particular example under consideration for 0·05 < hdh < 0·95J(2r), (199 is approx­
imately constant.t On the other hand, as it can be seen from Fig. 5, the variation of the
cleavage angle 80 with hdh may be quite significant. From Fig. 5 it is seen that, if the
adjacent medium is stiffer (in this case E 2 > E 1), the crack tends to propagate away from
the interface. Thus, it may be thought that in this case (quasistatic) crack propagation
would take place in the mid-plane of the layer. However, theoretically for certain hl2a
ratios and h11h = 0·5, (199 is a minimum. Hence, the crack propagation along the mid-plane
is basically unstable. Taking into account also other possible imperfections (in load sym­
metry, geometry and material properties), it is more likely that the crack path would be a
wavy curve with a long wave length which wanders between the neighborhoods ofthe two
interfaces. If there are no imperfections in the bonds adhering the layer to the half planes,
the crack path should not reach or intersect the interface.

For three different materials, Figs. 6 and 7 show some numerical results. The material
constants used in the calculations and shownin Fig. 6correspond to asteel-epoxy-aluminum
combination. Figure 6 shows the variation of the stress intensity factors, k 1, k2 as functions
of hla. In the results shown in Fig. 6 the crack is located in the mid-section of the layer.
Note that in this example, in spite of the symmetry in loading and geometry, the shear
component of the stress intensity factor k2 and fracture initiation angle 80 are not zero.

y

E, = 3x10 7 psi. 1/, =0'3

E2=I0 7 psi.1/2=0-3

E 3 =4·5xlo'psi. "3=0'35

OJ-y lx, 0) = - (To. Ixl< a

!!!. = 0-5
h

1·0 '--'--'---

10°

65432o

I~~:::=====-----f0 a,

-I~

*,

h
0"

FIG. 6. Stress intensity factors for three different materials.

t In this example J(2r)a1J8 goes through maxima around h,/h = 0·1 and 0·9 where it has a value of 1·014 k 1 -
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200
; '" co ' .!:!:J (1+1(3) = 179·5.__ .__.~.__ .__ .

10o 5

II
o

FrG. 7. Strain energy release rate for three different materials.

However, due to the relatively small difference between the moduli ofsteel and aluminum,
k2 is rather small compared with k i .

For h 0 the problem reduces to that of bonded dissimilar half planes with an inter­
face crack for which the integral equations may be expressed as

Pr(X) ,f () 1II f2(t) dt
-- = -Y11 X +-
!J.2b2 n -1 t-x

pix) = ~ II fl(t)dt +yfz(x)
J1.zbz n _ I t - x

y = brlb2 , Ixi < 1
(66)

(66) can be solved in closed form [1] giving

= uo[(t-2ip)R(t)-I], ItI > 1

(
t+l)i

P
1 (I+ Y)R(t) = t-l (tz-l)-t, P= 2n log l-y .

fl(t) + ifz(t) = b ~~ )(t-2iP)R(t),
!J.z z +y

(1;y-iu;y = u;y-iu;y = 2!J.zbzF(t)

ItI < 1

(67)
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Defining the stress intensity factor by

we find

59

(68)

(69)k 1-ik2 = 0"0(1-2ip).

Now expressing!l +if2 around t = 1 and using (69) we may write

. . . ,u2b2(1 +1')
(k 1-lk2)1-2 = 11m (f1 +if2) R()

1-1-0 t

= lim if1 + if2),u2bi1 +y)iJ(1- t2)J( 11- 1') (11- t)iP
1-1-0 +1' +t

= - lim ,u2b2(1_l)t(1-t)iPJ(1-t2)(f2-if1) (70)
1-1-0 1+t

which, for the homogeneous case (i.e. f3 = 0, y = 0) reduces to (56).
From (56) and (70) it is seen that, because of the oscillation term [(1- t)/(1 + t)JP, a

limiting value of (k 1 - ik2h for h --+ 0 cannot be obtained in terms of the known quantity
(k 1- ik2)1-2 by equating the crack opening displacements for the two cases. However, the
quantity which is continuous and which can be computed in both cases is the rate of crack
closure energy (generally known as the strain energy release rate for a slowly propagating
crack). For the two cases h =I- 0 and h = 0 the closure energy for a crack propagating in its
own plane may be expressed as [9, 10]

(
iJU) =7t(1+K3)(k2 k2)
;:) 4 1+23
va 3 ,113

(71)

(
iJU) = ~ (,Ill +K1,u2)(,u2+ K2,u1) (ki+k~)1-2
oa 1-2 2,u1,u2[(1+K 1),u2+(1+K2),u1]

where, (k 1- ik2)1 _2 is given by (69). (iJUliJa) 3 is a function of h and as h --+ 0 (iJUloah --+

(oUloa)1_2'
For the elastic constants shown in Fig. 6 we find

4,u;(OU) = 5.52. (72)
7t0"0 oa 1-2

The variation of(iJUliJah with hla and its limiting value for h --+ 0 given by (72) are shown
in Fig. 7, which also shows the limiting value of (iJUloah as h --+ 00.

For a fixed value oflayer thickness-to-crack length ratio (in this case, unity), the variation
of k 1 and k2 with the relative position of the crack is shown in Fig. 8. The results shown in
Figs. 5 and 8 are quite similar. In Fig. 5 both half planes are aluminum. In Fig. 8 the lower
half plane is replaced by steel which has a larger modulus. As a result, there is a slight
reduction in the magnitudes of k 1 and k2 • Their distribution and the distribution of the
predicted angle of fracture initiation (Jo in htlh have no longer the symmetry properties
observed in Fig. 5.
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Finally, as a special case ofthe foregoing example we consider the problem of an elastic
layer bonded to an elastic half-plane where the layer contains a crack parallel to its free
surface (see the insert in Fig. 9). For the case of uniform normal tractions O'~y = -0'0 applied
to the crack surface, a fixed hl2a ratio, and a material combination of aluminum-epoxy
the numerical results are shown in Fig. 9. The figure shows that generally, the stress intensity
factors increase indefinitely as the crack approaches the free surface and decrease as the
distance from the crack to the interface decreases. However, as seen from the figure, for the
dimensions and the material combination considered here the shear component of the
stress intensity factor k 2 goes through a slight minimum around hdh = 0·75. Physically
this result is not unexpected. The minimum would be more pronounced for larger values of
relative layer thickness and would disappear for smaller hl2a ratios. Figure 9 also shows the
predicted angle of fracture initiation eo at the crack tips.
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A6cTpaKT-PaccMaTpHBaIOTcli 3aAa'IH nJIOCKoi!: Ae.popMaUHH H aHTHnJIOCKOrO C,L\BHra AJIli 06111HX
MHOrOCJIoi!:HbIX CJIOlKHblX CTpyKTyp. rJIablHoi!: ueJIplO pa60TbI lIBJIlieTCli cpaBHeHHe TeOpeTH'IecKHX
paccYlKAeHHi!: AJIli HCCJIe,L\OBaHHlI H3JIOMa MHOrOCJIoi!:HbIX CTpyKTyp c TpelllHHaMH. 3aTeM, OCHOBHbIM
BonpOCOM lIBJIlieTCli onopeAeJIeHHe B03MYllleHHlI HanplilKeHHoro COCTOllHHlI B CJIOHCTOi!: cpe,L\e, BCJIeACTHe
CYlllecTBoBaHHlI TpelllHHbI. BbIBOAHTCli HOBbIi!: MeTOA onpe,L\eJIeHHlI oTHoclllllellcli K AaHHoMy Bonpocy
CHCTeMbl HHTerJIaJIbHblX ypaBReHHi!: 3aAa'IH. PellJaeTCli CHCTeMa ypaBHeHHi!: Mll HeKOTopblX 'IaCTHbIX
CJIy'IaeB H AalOTCli 'IHCJIeHHble pa3YJIbTaTbi AJIli K034K!>Hl\HCHTOB HHTeHCHBHOCTH HanplilKeHHi!:.


